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Shape Optimization of Rotating Cantilever Beams Considering
Their Varied Modal Characteristics

Jong Eon Cho, Hong Hee Yoo·
School of Mechanical Engineering, Hanyang University,

Haengdang-Dong 17, Sungdongr Gu, Seoul 133-791, Korea

The modal characteristics of rotating structures vary with the rotating speed. The material and
the geometric properties of the structures as well as the rotating speed influence the variations
of their modal characteristics. Very often, the modal characteristics of rotating structures need
to be specified at some rotating speeds to meet their design requirements. In this paper, rotating
cantilever beam is chosen as a design target structure. Optimization problems are formulated and
solved to find the optimal shapes of rotating beams' with rectangular cross section.
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1. Introduction

When cantilever beam-like structures such as
turbine and helicopter blades are designed, their
natural frequencies need to be estimated to avoid
undesirable problems such as resonance. It is a
common practice to find the natural frequencies
of a non-rotating structure if the geometric shape
and the material properties of the structure are
given. However, such a structure normally rotates
during its operation, and the rotational motion
significantly influences the modal characteristics
of the structure. So, if the modal characteristics of
stationary structures are indiscriminately used for
their design, critical design failures may occur due
to the modal characteristics variations which are
resulted from rotational motion. Therefore, the
varied modal characteristics of rotating structures
need to be considered for their safe and reliable
designs.

The modal characteristics of rotating cantilever

• Corresponding Author,
E-mail: hhyoo@hanyang.ac.kr
TEL: +82-2-2290-0446; FAX: +82-2-2293-5070
School of Mechanical Engineering, Hanyang Universi­
ty, Haengdang-Dong 17, Sungdong-Gu, Seoul 133-791,
Korea. (Manuscript Received June 12, 2003; Revised
November 17,2003)

beams were first investigated by Southwell and
Gough (1921), and their monumental work was
followed by many theoretical and numerical stu­
dies (Yntema, 1955; Schilhansl, 1958; Carnegie,
1959; Putter and Manor, 1978). Recently, more
elaborate methods (Kane et aI., 1987 ; Y00 et aI.,
1995; Yoo and Shin, 1998) have been introduced
to analyze the modal characteristics of rotating
cantilever beams efficiently and in detail. Using
the methods proposed so far, the modal charac­
teristics of rotating cantilever beams could be
analyzed if the geometric and the material pro­
perties are given. For a practical design of a rota­
ting structure, some specific modal characteristics
are given as design requirements (to avoid unde­
sirable excessive vibration problems), and the
geometric shape of the structure needs to be
found. Such investigations for rotating structures
are, however, rarely found in the literature.

The purpose of this paper is to find the optimal
cross section shapes of rotating cantilever beams
that provide some specific modal characteristics
such as maximal and minimal natural frequen­
cies versus the angular speed. Only the thickness
shapes of rotating beams were investigated in the
previous study (Yun and Yoo, 2001). Chordwise
bending equations of motion of rotating beams
were employed for the investigation. To extend
the previous study, both the thickness and the
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Now, the equations of motion can be derived
from the following equation

rL
( afJP
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The angular velocity of the rigid hub and the
velocity of a point 0 (which is fixed in A) can be
expressed as follows:

where r is the radius of the rigid hub and x is
the distance from point 0 to the generic point in
undeformed configuration. In the present work,
s, U2 and U3 are approximated by employing the
assumed mode method as follows:

where «Pli, «p2j and «P3i are spatial functions,
qu, q2j and q3i are generalized coordinates, and
J.lI, J.l2 and /.la are the numbers of the generalized
coordinates. Since the non-Cartesian variable s
denoting the arc-length stretch is approximated,
the following geometric relation is used to derive
the equations of motion

Thus, the velocity of the generic point P can be
expressed as follows:

fJP = [UI-QU2] al
+[u2+Q(r+x+uI) ]a2+u3a3

width shapes are considered in the present study
by using flapwise bending equations of rotating
beams. To derive the equations of motion, Kane's
method (Kane and Levinson, 1985) along with
the assumed mode method is employed. MFD
(Method of Feasible Directions) as an optimi­
zation algorithm (Arora, 1989; Vanderplaates
Research and Development, 1995) and CDM
(Central Difference Method) for the sensitivity
analysis are also utilized to solve the optimization
problems.

In this section, equations of motion of rotating
cantilever beams are derived by using the linear
dynamic modeling that employs hybrid defor­
mation variables proposed in Yoo et al. (1995) .
The following assumptions are employed in the
present study. First, the beam has homogeneous
and isotropic material properties. Second, the
beam has slender shape with rectangular cross
section so that shear and rotary inertia effects can
be neglected. These assumptions are employed to
avoid complexities involved in more general geo­
metric shapes and material properties of beam
and to achieve the purpose of the present study,
which is how to formulate design problems for
rotating beams and to find the optimal solutions
of the problems.

Figure I shows the configuration of a cantilever
beam fixed in a rigid hub (reference frame A)
which rotates with angular speed. In the figure,
ai, a2, and a3 represent orthogonal unit vectors
fixed in the rigid hub, it is the elastic deformation
vector of a generic point, and Ul, U2, and U3 are
the components of the elastic deformation vector.

2. Equations of Motion

where p and L are the density and the length,
respectively. And q.. consists of qu, q2j and q3i,
and J.l is the total sum of J.ll, J.l2 and /.la. The cross
section shape of the beam is rectangular and it
is assumed that the thickness h and the width
b of the beam are represented by cubic spline
functions such that

Fig. 1 Configuration of a rotating cantilever beam

hi.x) =ao+alx+a2X2+a3x3

b(x) =do+dIX+d2X2+d3X3 (6)
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Table 1 Material and geometric properties of the
beam

The strain energy of the beam can be expressed as

I (L ( as )2
U=TJo EA ax dx

I (L ( J2U2)2 I rL (J2U3)2 (7)
+TJo st; ax2 dX+TJo st; az2 dx

Young's modulus (E)

Density (p)

Length (L)

69.DGPa

DAm

The natural frequencies of rotating beams are

(13)

determined by their angular speed and the co­

efficients of the cubic spline functions of thickness

and width of the beam cross section. Therefore,

they can be expressed as

where .Qs is the magnitude of steady state angular

speed, hoe =0.002 m) and bo( =0.035 m) are ref­

erence thickness and width, and hmln ( =0.00 I m)

and bmm(=0.0175 m) are the minimum thickness

and width of the beam.

Figure 2 shows the minimum and the maximum

fundamental natural frequency loci of the rota­

ting beam when the steady-state angular speed

increases from 0 rad/s to 300 rad/s. Thus, the two

loci embrace the possible region of the funda­

mental natural frequency. To obtain Fig. 2, the

optimization problem to find the minimum or the

maximum fundamental natural frequency, when

the angular speed is 0, is first solved with the

initial values of design variables given in Table 2.

where X consists of the cubic spline coefficients

ao, ai, az; a3, do, di, dz and d3 which are design
variables, The material and geometric properties

of the beam which influence the modal charac­
teristics are given in Table I.

The fundamental natural frequency of a con­

stantly rotating beam is a function of the cubic

spline coefficients determining the cross section

shape of the beam. To find the cross section shape

of the beam, which provides the minimum (or

maximum) fundamental natural frequency, the

objective function and the constraints are given

by

Min (or Max) WI (.Qs, X)

subject to i\(X, x) biX, x) dx s.Lhsb« (14)

hex, x) ~hmln (O~x~L)

bi X, x) ~bmln (O~x~L)

( 10)

(II)

(12)

3. Optimization Problems and
Numerical Results
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By substituting Eq. (6) into Eq. (8) and using the

rule of integration by parts, equations for flapwise

bending motion can be written (by using matrix

notations) as

where E denotes the Young's modulus, A is the

cross sectional area, and In and Ia are the second

area moments of the cross section.

In this study, the modal characteristics of

rotating beams in flap wise bending motion are

of major concern. If the point 0 in Fig. I is the

center of rotation, governing equations for flap­

wise bending motion can be derived as follows:

[M33
]{ ria }+([KBJ +.QZ[KGJ){ q3 }=o (9)

where [M33
] , [KBJ, and [KG] are defined by

M1J== [L p(ao+alx+a2X3+a3X3)

(do +d,x +d2X2+d3X3) rP3irP3jdx
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Table 2 Initial and optimum values of the design variables and the objective function (to find the minimum
frequency shape when the angular speed is 0)

~
ao al a2 a3

Values dJ d, d2 d3

0.002 0 0 0
Design variables Initial values

0.035 0 0 0

0.00105 -0.00128 -0.00041 0.14720
Optimum values

0.0175 0.01488 0.00652 0.00246

Initial value 64.019
Objective function

Optimum value 13.198
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Fig. 2 Band of the fundamental natural frequency
versus rotating speed
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However, for the maximum frequency result, only

the thickness varies and the width becomes the

minimum value bmJn. Thus, it can be concluded

that increasing the thickness while reducing the

The optimum values of the design variables re­

corded in Table 2 are then employed as the

initial values to solve the optimization problem

to find the minimum or the maximum funda­

mental natural frequency, when the angular speed

is 0.1 rad/s. The same process continues until

the angular speed reaches 300 rad/s. Thus, 3001

optimization problems are solved to obtain the

minimum and the maximum loci, respectively.

Figure 3 shows a typical objective function his­

tory while solving an optimization problem (to

find the minimum frequency shape when the
angular speed is 0 rad/s): Figures 4 and 5 show

the thickness and the width of the beam versus

the beam length for the minimum and the maxi­

mum fundamental natural frequency results. The

thickness and the width variations along the

beam length with angular speed 300 rad/s are

shown in the figures. Both the thickness and the
width vary for the minimum frequency result.
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width to the minimum value is the most effective

way to maximize the fundamental natural fre­

quency.

In the following problem, another constraint is

added to the previous problem. When the beam

does not rotate, the fundamental natural frequen­

cy should remain constant regardless of its shape
variation. So, the objective function and cons­

traints are given as follows:
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where Xo= [0.002, 0, 0, 0, 0.035, 0, 0, 0] re­

presents the design variables of the beam with

uniform cross section along its length.

Figure 6 shows the minimum and the maximum

fundametal natural frequency loci of the rotating

beam when the angular speed increases from 0

rad/s to 100 rad/s. Thus, the two loci embrace the

possible region of the fundametal natural fre­

quency. As shown in the figure, the two loci meet

when the angular speed is zero. Figures 7 and 8

show the thickness and the width of the beam

versus the length of the beam for the minimum

and the maximum fundametal natural frequency

results. The thickness and the width variations

along the beam length with angular speed 100

rad/s are shown in the figures. Differing from
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Fig. 10 Beam shape which maximizes fundamental
natural frequency

width vary for the mmimum and the maximum

frequency results. Figures 9 and 10 show the

overall pictures of the beams for the minimum

and the maximum frequency results, respectively.

The cross sections are amplified three times com­

pared to the lengths of the beams.

In the following, a shape of beam which has a
specific natural frequency at a specific angular

speed is to be found. To find such an optimal

shape, the objective function is given by

Fig. 9 Beam shape which maximizes fundamental
natural frequency

where Q G and WG are the specified angular speed

and first natural frequency. The constraints em­

ployed for this optimization problem are same as

those of Eq. (15).

Figure 11 shows three loci: the maximum

fundametal natural frequency locus, the minimum

fundametal natural frequency locus, and the locus

which satisfies Wl(QG, X) -wG=O. For this pro­

blem, Q G is set by 80 rad/s and WG is given as

120 rad/s. Figures 12 and 13 show the thickness

and the width of the beam versus the length of
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4. Conclusion

In this study, an optimization method has been
employed to find rectangular cross section shapes
of rotating cantilever beams which have some
specific modal characteristics. The thickness and
the width were represented by cubic spline func­
tions and the coefficients of the spline functions
were employed as design variables. Optimization
problems were formulated and solved to find the
design variables. The numerical results showed
that there exist specific cross section shapes which
minimize or maximize the natural frequency of
the rotating beams. There also existed a specific
cross section shape which has a specific natural
frequency at a specific angular speed. As long as
the natural frequency is specified within the band
between the maximum and the minimum natural
frequencies, the corresponding cross section shape
can be found through the optimization procedure
proposed in this work.
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